ION BEAM INDUCED CHARGE COLLECTION (IBICC) STUDIES OF CADMIUM ZINC TELLURIDE (CZT) RADIATION DETECTORS1 B.L.Doyle, G.Vizkelethy2, and D. S.Walsh

نویسندگان

  • B. L. Doyle
  • G. Vizkelethy
  • D. S. Walsh
چکیده

Cadmium Zinc Telluride is an emerging material for room temperature radiation detectors. In order to optimize the performance of these detectors, it is important to determine how the electronic properties of CZT are related to the presence of impurities and defects , that are introduced during the crystal growth and detector fabrication. At the Sandia microbeam facility IBICC and Time Resolved IBICC (TRIBICC) were used to image electronic properties of various CZT detectors. Two-dimensional areal maps of charge collection efficiency were deduced from the measurements. In order to determine radiation damage to the detectors, we measured the deterioration of the IBICC signal as the fimction of dose. A model to explain quantitatively the pattern obsemed in the charge collection eftlciency maps of the damaged detectors has been developed and will be discussed in the paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Dislocation Walls on Charge Carrier Transport Properties in CdTe Single Crystal

Radiation detectors for medical imaging at room temperature have been developed thanks to the availability of large chlorine-doped cadmium telluride (CdTe:Cl) crystals. Microstructural defects affect the performance of CdTe:Cl radiation detectors. Advanced characterization tools, such as Ion Beam Induced Current (IBIC) measurements and chemical etching on tellurium and cadmium faces were used t...

متن کامل

Characterization of charge collection in CdTe and CZT using the transient current technique

The charge collection properties in different particle sensor materials with respect to the shape of the generated signals, the electric field within the detector, the charge carrier mobility and the carrier lifetime are studied with the transient current technique (TCT). Using the well-known properties of Si as a reference, the focus is laid on Cadmium-Telluride (CdTe) and Cadmium-Zinc-Telluri...

متن کامل

Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and en...

متن کامل

Digital fast pulse shape and height analysis on cadmium-zinc-telluride arrays for high-flux energy-resolved X-ray imaging.

Cadmium-zinc-telluride (CZT) arrays with photon-counting and energy-resolving capabilities are widely proposed for next-generation X-ray imaging systems. This work presents the performance of a 2 mm-thick CZT pixel detector, with pixel pitches of 500 and 250 µm, dc coupled to a fast and low-noise ASIC (PIXIE ASIC), characterized only by the preamplifier stage. A custom 16-channel digital readou...

متن کامل

The Cadmium Zinc Telluride (CZT) Detector Array Innovation Pathway

This pathway describes the development of soft gamma-ray/hard x-ray detector arrays at NASA’s Goddard Space Flight Center (GSFC, or Goddard), through a collaboration between the gamma-ray spectroscopy group and the detector branch. The Cadmium Zinc Telluride (CdZnTe, or CZT) detectors which resulted from this decade-long development were first flown on the wildly successful SWIFT mission in 200...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000